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A B S T R A C T  

Here we build on the result given in [P1] and extend those in [HL2] to 
functions which are k times differentiable a.e., k > 1. For each k we give a 
class of irrational numbers Sk such that the skew product extension defined 
by these functions is ergodic for irrational rotations by these numbers. In 
the second part of this paper we examine the cohomology of functions over 
the adding machine transformation, and produce extensions of results from 
[H1] and [HL3]. 

1. I n t r o d u c t i o n  

1.1 BACKGROUND. In this paper  we will consider cyhnder flows defined by the 

irrational rotat ion and the yon Neumann-Kakutan i  adding machine transforma- 

tion on the circle T.  These are two types of skew products  (or cylinder cascades) 

which have been studied by various authors. The skew product over the irrational 

rotat ion will be dealt with in Section 2, and the skew product  over the adding 

machine will be studied in Section 3. This section will form a basic background 

of details needed in these later sections. 

The conditions for ergodicity, given in Section 2, are on the first k derivatives, 

k > 1, of a continuous function whose integral is zero. This is impor tant  when 

seen in the context of results of L. Baggett [B] and M. Herman [He], when if the 

function is smooth, then it is a coboundaxy for certain irrational numbers. 

We also note the work of I. Oren [O], who has shown that  for rotations by 

any irrational number  o~, step functions of the form X[0,B ] - ~ give rise to ergodic 
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skew products if and only if ~ is rational or 1, a and/3 are linearly independent 

over the rationals. Also K. Petersen [Pel] has shown that such step functions 

define cocycles which are coboundaries if and only if ~ ~ Za.  Thus it suffices for 

us to study continuous functions, and properties of their derivatives which give 

ergodic skew products for certain irrational numbers. 

The results given here extend the work done by P. Hellekalek and G. Larcher 

in [HL2]. They give results for functions f : [0,1] ~ R. which are k times 

continuously differentiahle k k 2, whose derivatives satisfy: 

(i) fO)(O) = / 0 ) ( 1 ) ,  for j = 0 , . . .  ,k - 2, 
1 

(ii) f(k-1)(O) ~ f(k-1)(1) , and fo fd# = O. 
They give a class of irrational numbers which guarantee ergodicity for this class 

of functions; for all n these numbers satisfy 

1 
(1) IIq.~ll < q2~+1" 

Here we weaken the conditions on the final derivatives, we only require that: 

(i) f fd# = 0 and f(~-2) is continuous, 

(ii) f(~-l)  is piecewise continuous with zero integral, 

(iii) f(k) is Riemann integrable, with non-zero integral. 

We prove ergodicity for a wider class of irrational number ,.q~, whose partial 

quotients satisfy lira sup(an+i/qt,) > 0, that is, there is a positive constant K t 

such that,  for infinitely many n, 

K t 
(2) l[q,,all < q~+l. 

These results must also be seen in the light of the work of M.' Herman [He, 

Annexe, p.229], who has demonstrated that C k functions with zero integral are 

coboundaries for a class of irrational number which satisfy 

D 
Ilq.~ll > q~ 

for all n, where r is any number such that 1 < r < k. Thus, despite the fact that 

our functions are close, in some sense, to C k functions, we get an ergodic skew 

product for a class of irrational numbers. 

Finally, we note that the case k = I has been covered in the papers [HL1] 

and [P1]. In [HL1] ergodicity is demonstrated for continuously differentiable 
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functions with a single discontinuity, for all irrationals. In [P1] we give a class 

of functions which are piecewise absolutely continuous with a derivative which is 

Riemann integrable with non-zero integral, and show ergodicity for all irrationals. 

However, if we substitute k = 1 in (1) or (2) we obtain a result for a smaller 

set of irrational numbers than those given for the corresponding functions in 

[HILl] or [P1] respectively. Thus, it seems that passing from conditions on the 

first derivative to conditions on the second derivative produces a 'leap' in the 

requirements on the irrational numbers. This does not appear to occur when 

passing between any higher derivatives. 

The conditions for ergodicity given in Section 3 correspond to those given in 

Section 2, for k = 1. Results on the ergodieity of step functions of zero integral 

over the adding machine have been given by P. HHellekalek [H2]. For example, 

in Theorem 2 of [H2] it is shown that step functions of the form X[0,~) - / 3  give 

rise to ergodic skew products if and only if/3 is irrational, or strictly non-q- 

ache. Theorem 3 in the same paper, [H2], gives us results for more general step 

functions. Also from [H1], we know that such step functions define cocycles which 

are coboundaries if and only if/3 is q-adie. 

Firstly, for the basic k = 1 case, we demonstrate ergodicity of the skew product 

for all adding machine transformations. This extends the work of P. Hellekalek 

and G. Larcher [HL3] who use a Lipschitz derivative condition for functions with 

a single, non-zero jump on a particular type of adding machine. We then observe 

that using the methods of Section 2 does not give us an extension of this result 

for k > 1. 

In the latter part of this section we give a class of functions, namely those 

with zero integral, and have a derivative of bounded variation. We show that 

these functions define cocycles which are always coboundaries for a certain class 

of adding machine transformation. This is analogous to the result by M. Herman 

[Hie], who has shown that this same class of functions are also coboundaries for 

almost all irrational numbers. 

This result, together with the class of functions given in the first part of this 

section, emphasize that certain adding machine transformations have features in 

common with rotations by irrational numbers with bounded partial quotients. 

We also note that the functions given in the first part are close, in some sense, 

to those given in the second; however, the discontinuities which give a non- 

zero integral for the derivative make all the difference for the cohomology of the 
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cocycle. 

1.2 COCYCLES, ESSENTIAL VALUES, SKEW PRODUCTS. Firstly some defini- 

tions and notation in common use throughout this paper. All of the proofs of 

the results given here are to be found in [KS]. 

1.2.1 Det]nitions: Let (T,  12, #) denote the one-dimensional torus with standard 

Borel field and Lebesgue measure. If T is an ergodic automorphism of T ,  then 

this defines a Z-action n ~ T n, n • Z on (T,f~,#) .  A r ea l -va lued  a d d i t i v e  

cocyc l e  fo r  T is a Borel map a : Z x T --* R satisfying the cocycle relation: 

(3) a ( n + m , x )  = a(n, T m x ) + a ( m , z )  

for/~-a.e, x E T,  and all n, m E Z. Any such cocycle is uniquely determined by 

the function f ( . )  = a(1, .). Thus we have 

rl--1 

~--~foTk(z) forn>_ 1, 
k=0  

a(n, z) = 0 for n = 0, 

- a ( - n ,  x) for n < - 1 .  

Conversely, if f : T ~ R is any Borel map, the above formulae define a real- 

valued coeyele for T. We write f , ( x )  for a(n, z), as defined above, to indicate 

the relationship between the cocyele mad its determining function. 

The cocycle a is a e o b o u n d a r y  if and only if there is a Borel map g : T ~ R 

such that  for #-a.e. x • T ,  a(1,z)  = f(x) = g(Zx) - g(x). 
Let R = R[.J {oo} be the one-point compactification of R. An element y • R. 

is called an essen t ia l  va lue  o f  a if, for every neighbourhood N(y) of y in R 

and for every B • f~ with #(B)  > 0, we have an n • Z such that 

The set of all essential values of the cocycle a is denoted by E(a) and we put  

E(a) = E(a) N R. m 

The following are standard results from [KS]: 

1.2.2 LEMMA: E(a) is a dosed (additive) subgroup of R. 
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1.2.3 LEMMA: Let T be an ergodic automorph/sm o[ (T ,  ~, p) and Jet a : Z x T --, 

R be a cocycle for T. Suppose ]C C R is a compact set with ]C, [7 E(a) = 0, then 

for every C E ~ with p(C) > 0 there is a Bore /se t  B C C with p(B)  > 0 such 

tha t  • Z ,  B N T - " B N  : • IC)  = 0. 

1.2.4 Definition: Let (R, B, ~) denote the standard Lebesgue structure on R.  

We form a new measure space (T  x R ,  fl x B,  p x ,~) with product  structure, 

suppose that a : Z x T ---} R is a cocycle for the ergodic automorphism T on T ,  

and d e a ,  e a new action T. of Z on T × R by T r ( a ,  z) = ( r " a ,  • + a(n, a)) .  

The Z-action T, on T × R is called the skew p r o d u c t  o f  T w i t h  R .  I 

The main result we need comes from [KS], and relates the ergodicity of T, to 

the properties of the cocycle: 

1.2.5. THEOREM: Ta is ergodic if and only irE(a)  = R. 

1.3 THE IRRATIONAL ROTATION. When there is no ambiguity we shall think 

of arbi trary real numbers as elements of T ,  by identifying them with their con- 

gruence class rood 1. We shall also employ the following notation: 

For z E R we denote by ][z][ the distance of z to the nearest integer: 

Ilxll = min{]j-ml:j Z}. 

For a E T ,  we denote by [al, a2, . . . ]  the c o n t i n u e d  f r a c t i o n  e x p a n s i o n  of 

a. The ak are called the p a r t i a l  q u o t i e n t s  of a. 

We define 
1 

= [ a l , . . . , a k ]  = 
qk 

al -i- 
a2 + - -  1 + 

ak 

in lowest terms, for k _> 1. These fractions are called the c o n v e r g e n t s  of a and 

the qk are called the p a r t i a l  q u o t i e n t  d e n o m i n a t o r s .  

These partial quotient denominators tell us which multiples of a are closest to 

integers; in particular we have the following: 

1.3.1 LEMMA: 

(i) For all n we have that ½ < q . .  llq,_,all < 1, 
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(ii) for a / /n  and a / /p  > 0 with qPn < qn+l we have IIq~l[ < q~- l .  Ilqnall. 

Proof." For the first equation, see [HW] or [Ca]. For the second, we note that if 

j is the integer for which I J - qna I is minimized, then IlqPnall < I q p - l . j  _ q~a I 

and so by the triangle inequality, 

IIq~ll < I J - q-~ I + " "  + I J - q , a  I = q~- l .  iiq,c, ii ' 

which proves the result. | 

1.4 THE ADDING MACHINE. As in [H1], we shall consider a generalization of 

the von Neumann-Kakutani  adding machine transformation on T; the following 

definitions and notation are taken from those given in [H2]. 

Let q = (qi)i>j be a sequence of integers qi, with qi ~ 2, for all i. If A (q) 

denotes the compact Abelian group of q-adic integers, then the transformation 

z ~ z+  1 on A(q),  where 1 = (1, 0 , . . . ) ,  is uniquely ergodic with respect to 

normalised Haar measure on A (q) (see [HR]). 

Consider next the circle, T with Haar measure p. Define the sequence of 

integers p(k), k > 0 by 
1 for k = O ,  

p(k )  = q l . . . q k  f o r k = l , 2 , . . . .  

If z = ~=oZip ( i )  with zi E {0,1, . . . ,qi+~ - 1 } is an element of A(q),  then 
o o  

@(z) = _ p(/~1) modl 

belongs to T. The map @ : A(q) --~ T is measure-preserving and injective on 

A(q) except on a subset of Haar measure zero. 

The q-adie representation of an element x of T, 
oo 

X ~ = p ( i - + l )  w i t h z i E  { 0 , 1 , . . . , q i + l - 1 } ,  

is unique under the condition xi ¢ qi+l - 1 for infinitely many i. The uniqueness 

condition for the representation ensures that the following transformation T : 

T --+ T is well defined: 
o o  

Tx := &(z + I) where z = z(x) = ~xip(i). 
i=0 

T is ergodic with respect to p and T o ~(z) = ~ (z+  1) for almost all z E A(q).  

T may be called a (generalized) von  N e u m a n n - K a k u t a n i  a d d i n g  m a c h i n e  

t r a n s f o r m a t i o n ,  with associated integers p( k ), k > 1. 
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2. T h e  Irrat ional  R o t a t i o n  

2.1 INTRODUCTION. In this section we study skew product extensions of irra- 

tional rotations on T. For each k > 1 we define a class of functions which have 

k defiwtives a.e. satisfying various conditions. We study this class of functions 

and give, for each k, a class of irrational number Sk and show that skew products 

over rotations by numbers in this class are ergodic. 

In the subsection below, firstly we discuss the orbits of the irrational rotation 

and define the classes of functions and irrational numbers that we shall be working 

with. Then we study the coeycles defined by functions in our class over rotations 

by these irrational numbers. Finally we demonstrate that the only possibility 

for their group of essential values (or asymptotic range) is R,  which guarantees 

ergodicity of the skew product (see 1.2.5). 

2.2 CONDITIONS FOR ERGODICITY. 

2.2.1 Convention: Throughout this section we shall suppose that f is k-times 

differentiable a.e. k > 1, with derivatives satisfying the following properties: 

(i) f fdp  = 0 and f(k-2) is continuous, 

(ii) f(k-1) is piecewise continuous with zero integral, 

(iii) f(k) is Riemann integrable with ff(k)dp # o. 

For the rest of this subsection we assume without loss of generality that 
1 | f f(k)dp > 0, and that the irrational number a < ~. 

For small sub-intervals of T we shall consider the order inherited from R,  and 

use the words left and fight accordingly. 

The following result may be found in part 1, section 4 of [K]. 

2.2.2 PROPOSITION: Let P,(  a) be the set of right half-open interva/s o f T  defaned 

by the points {- jR}  for j = 0,. . .  ,q, - 1. Then for all n, each in te rva /ofPn(a)  

has length Ilqn-l~ll or Ilqn~ll + IIq--l~ll. For ~11n, the map T sends each interval 

of Pn(a) onto another, with the following exceptions: for n even 

(i) the in te rva / [0 , -q , , - l a )  is placed i n s i d e  [ - ( q .  - 1 ) a , - ( q . - a  - 

(ii) the interva/[-(qn - q , -1)a ,0)  overBovcs [ - (q ,  - q,-1 - 1 ) a , - ( q ,  - 1)a). 

For odd n the intervals are the same but the end-points are swapped. 

For j = 0 , . . . ,  k - 1 we denote the variation of f(J) by c(j), then the Denjoy- 

Koksma inequality gives us that  

( 4 )  I _ . . ,  , I < c ( j ) ,  
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for each j = 0,..., k - I, all n > 0 and all z E T. 

Let wt,... ,WN be the discontinuities of f(k-t). Arrange these discontinuities 

in increasing order: 0 < wl _< "-- < WN < 1. We may assume that wl = 0, since 

the rotation of the domain of f necessary to bring this about may be performed 

initially, and does not affect the ergodicity in question. 

Suppose that at wr, f(k-1) jumps by dr = f(k-1)(w+) - f(k-')(w~) for r = 

I,...,N, where f(k-1)(w+), f(~-')(Wr) are the limits of f(t-')(x) as z ap- 

proaches ~r from the left, right respectively. Since f(k-1) is piecewise continuous 

we have the following relationship: 

2.2.3 LEMMA: f f(~)dp = - ~ r ~ l  dr. 

Hence the condition for f f ( k ) d p  ~ 0 is equivalent to ~-'~ dr # 0. From [ P1, 

Lemma 2.6] we also have the following: 

2.2.4 PROPOSITION: For all n, the cocycIe f ~ - l )  has discontinuities at {wr- f i r }  

for 0 <_ j < qn and r = 1, . . . ,  N, with jumps of size dr at these points. Also, 

each partition interva] Q,  of p,(tr), contains at most 2N - 2 discontinuities of 

2.2.5 De~qnltlon: For any positive integer k > 1, define the subset ,9h of irrational 

numbers whose partial quotients {a,,}, rt _> 1 satisfy the following condition: 

lira sup a"+------2-1 >0. 

For any a E ,gk, suppose that limsup(an+~/q~) = S > O. so there exists 

a subsequence of integers {nj}j>x and an integer J, with a,,#+x ~_ Kq~j for 

some 0 < K < S and all j > J. Since this is the subsequence we shall be 

considering, for convenience we drop the subscripts and assume that there is a 

positive constant K and an integer N t such that 

(5) art+l ~> Kq~ for rt ~> N:. 

For the rest of this section we shall assume that a E St. 

2.2.6 LEMMA: There is a positive constant Y, such that for rt > A t' and j = 

0,...,k-I, If~)(z)l< ~fora//xET. 

Proof: The result is certainly true for j = k - 1 from (4) above, for all n, 

with Y = Y(k  - 1) -- c(k - 1). We suppose that the formula holds for some 
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1 _< j _< k - 1 with Y = Y(j) and demonstrate the inequality for j - 1, n > N '  

and some Y = Y(j - 1). Then, if we take Y to be the maximum of all these Y(j) 
for j = 0 , . . . ,  k - 1 this will prove our result. 

We proceed in three steps: Firstly we show that there is a positive constant E 

such that for n > N' ,  and all intervals Q .  E P,,(a), 

Q,. 

From Proposition 2.2.2 and the cocycle relation (3), the integral in question is 

the integral of fO-O over qn - 1 iterates of Q ,  under T. Suppose that  p(Q,) = 
IIq,_~all, then the integral is equal to the integral of f(J-1) over all of T,  except 

for qn-1 intervals of size Ilqnall which are iterates under T. Hence 

0-1) d. f~,, I"  = E f(J-')(YPz)dp(x) 
p----O Q. cJ~ 

= / f(J-1)dp = / f(j-1)dp- f f(j-1)d" / J q n - I  r'~ 

~,~- i -  I T I 

U T ~ Q n  
pmo 

where I is the interval of size [[q,at[ , whose q,-1 iterates are missed out. Thus 

we have 

I 

since f0 -1 )  has zero integral over T. Applying (4), we get 

I !  f~-')d p < c(j l),,q,,a,, < c ( j - 1 )  c ( j - 1 )  
_ - < K q ~ + l  ' q n a n + l  

for n > N' ,  since ~ E 5k. 

If p(Q.) = [[q,,_lc~ll + [[q,,~[{, then we split this interval into two chunks, one 

ra of size [[q,-x~ll, the o ther /2  of size Ilqnai[- For z, we get the above estimate 

for the integral o f / ~ - 1 )  over it. For Is we have that for n > N'  

f~-') dp <_ c(j -1)Hqna[[ < c(~t+l  ,) 
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also by (4). Therefore, if we choose E = 2c(j - 1)/K, then we have ~tabnshed 

(8) for ~U i n t e r s  Qn e Pn(~),  and all . > N'.  

For the second step we demonstrate the following: There is a positive constant 

G such that,  for n > N' ,  in each interval Qn E P,,(a) there is an x E Q,, with 

0-1) x G 

Suppose not, then for some Q ,  E P~(a) and any G > 0 we have that  

i ~(i_~)cx ~ i> - G ¢. , ~ ~ for all x E Q n  and some n > N ' .  

In particular this holds for G = 4E. Supposing, without loss of generality, that  

f ~ - l )  is strictly positive on Q, ,  we must have that 

G 

Q,, 

from Proposition 2.2.2. However, from (6) we have an upper bound for this 

integral, and since n > N ~, we get 

Hence we have that 

G E 
q-~.llq.-lall  < q~+,- 

E 1 

which contradicts 1.3.1(i). This establishes (7). 

Finally we show the following: There is a constant Y(j  - 1) such that  for 

n > N'  and any interval Qn of P n ( a ) ,  for all x E Q. ,  we have 

0 - 1 )  x Y ( j  - 1) [f~. ()l < q~-, 

Since f(i-1) is absolutely continuous and the formula is true for j we have, for 

all a, b E T,  that 

f ( J - 1 ) ( b ~  - f(/-1)(a)l -- Y~J)dlz < • I b - a l .  
J q,~ x / J q,~ " "1 J 

a 
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Since a, b • Q. ,  we have I b - a I < 2llq.-:all and, using 1.3.1(i), this becomes 

(J-1)(b~ f(i-1)(a)[ 
f q n  x / - -  a q n  . . [  

Y(J)  .211q,_lall < 2Y(j) 
< ,,k-~-j k - i "  

'.In q n  

From (7)we may choose a to be a point for which ,>(o) I < ~ e . ~  

we have for n > N ~ and all x • Q ,  that 
J I 

(j-l)  x G 2Y(j) < 2Y(j) + G Is;. ()l  < 

This proves the result for j - 1, n > N'  with Y ( j  - 1) = 2Y(j) + G, and the rest 

follows by induction. I 

Since f ck~ is memann inte~able we may use Weyl's Theorem (see [Pe2, p.50]) 

to obtain the following, using the proof from [P1, Lemma 2.3]. 

2.2.7 LEMMA: There are positive constants Kl(k),  K2(k) and a positive integer 

Z such that for n > Z we have 

n.Kx(k) < f(,,k)(x) < n.K2(k) 

for MI z E T.  

2.2.8 PROPOSITION: Suppose that g is a [unction which defines the cocycle gq,, 

for which there are positive constants R, L1, L2 and an integer N1 such that for 

n > 171, all partition intervals Q.  of P . (a )  contain a subinterval J .  = [a., b.) 

which satisfies 
1 u(s.) >_ -~ u(Q.), 

on which g~. is absolutely continuous and 

I t q..L1 < gq.(x) < q..L2 or - q . . L 2  < gq.(x) < -q . .L1  

for n > ]71 and all x E ,In. Then there are constants H and F such that for 

n > N1, 

(i) gq. moves through a height greater than H on Y. ,  

(ii) for any interval In = [x, y] C_ gq. ( in)  we have that 

~ (g2(I.)N J.) 
> F l y - x l .  ,(Q.) 
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Proof: Choose H = L1/4R, and suppose that gq. is strictly increasing for 

n > N1, then the height h moved through by the cocycle on J ,  is given by 

l b. I dp. h = g , . ( b . ) - g q . ( a , , )  = gq. 
n 

By hypothesis, applying Proposition 2.2.2 and Lemma 1.3.1(i), we have that for 

n > N 1  
L1 L1 

h > - - ~ . q . . # ( Q . )  > 

If gq. is strictly decreasing we obtain, also for n > N1, a reversed inequality, 

but  with a minus sign; this proves (i). 

For (ii), define m = g ~ l ( x ) N  J .  and p = g q l ( y ) ~  j . ;  then, supposing that 

gq. is strictly increasing, for n > N1 we have g q l ( I . ) N  J .  = [m,p), and 

m" I d # "  y - -  X = g q .  

I By definition of gq,~ w e  have, for n > N1, that 

p - m > q..'2"1-, 

Hence we obtain 
p - m  y - z  

p (Q . )  > 2L2.q. l lq._,cd I ' 

and so, using Lemma 1.3.1(i), 

. ( g r . ' ( x . )NJ . )  > y - x  
~,(Q.) 2L~ 

If gq. is strictly decreasing, we get the same inequality for n > N1,  so putting 

F = 1/2L2 completes the proof of (ii). | 

To simplify the statement and proof of the following lemma we shall introduce 

some extra notation: For the cocycle f(;) we shall write ~b ('), where 0 < r, s < k. 

2.2.9 LEMMA: For j --- 0 , . . . ,  k - 1 there exist strict]y positive constants H( j ) ,  

F(j), L(i) and an integ~ N,(j) with the following properties: Within e ~  

; - t~r~  Q. of Pn(a) there is a s u b m t ~  J.(j),  with 

1 
p(J.( j ))  > L---~#(Q.) 
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such that  for n > NI( j ) ,  

(i) ¢~J)__j moves through a height g~eate~ th~ H(j) on J.(j), 
(ii) for any interval In(j) = [X, y] in ¢~{2j (J~(j))  we have that 

> F ( j ) ] y - x  I. ~(On) 
Proof." The result is certainly true for j = k - 1 by using Lemma 2.2.7, Propo- 

sition 2.2.4, and applying Proposition 2.2.8 to g = ~b~ k-l) with R = 1 / (2N - 2), 

L1 = Kl(k) ,  L2 = K2(k) and N1 such that qNt > Z. We shall assume that the 

result holds for 1 < j < k - 1, and demonstrate the result for j - 1. 

From (i), since the result holds for j ,  for n > Yl( j ) ,  ¢(J)-J moves through at 

least g ( j )  on every Jn(j) C Qn where 

1 

~(Jn(j)) > L--~(Qn). 

Hence there is some x • Jn(j) with ¢(J_)j(x) > ¼H(J), so without loss of gener- 

ality we may suppose that ¢I/_)j(x) > ¼H(J). By hypothesis ¢~i_)j is continuous 

on Jn(j) so, for n > g l ( j ) ,  we may apply (ii) above to the interval 

 n(j) = 

( ) '  to give us Sn(j) = ¢~J)_j In(j) [7 Jn(j) satisfying 

1 
p(Sn(j ) )  > L-~I~(Qn),  

on which 

(8) t l ( j )  < ¢~J_)/(x) < t2(j) 

for some strictly positive constants t l ( j ) ,  t2(j) and L'(j). 
From the cocycle relation (3), for all n and all x • T,  we have that  

¢(J)j+I(X) ¢~J)j(X) (J) "X A ( j )  [ , , , q n - - 1  ", 
= + ¢ k _ i ( W k - ~  ) + " -  + vk_itvvk_ i x:, 

where Wk-i  = T q~-~ • Hence, in order to estimate bounds for ¢ ~ i + l ( z )  we must 

look at the values of ¢(kJ_)j for qn - 1 iterates of x by Wk-j.  Since a • 81, we 

have, for n > N '  and 1 _< M _< qn - 1, that 

[ w M i x  - x [ = M .  IIq~-iall 
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which, by Lemma 1.3.1(ii) and (5), becomes 

< M.qkn -j-allq,,~ll < M.q~ - j - l . ~  

Isr. J. Math. 

1 M 

Kq~ +1 KqJn +2" 

Hence for n > NI( j  - 1) = max { N ' , N l ( j )  }, all points in S , ( j ) ,  except for 

a subinterval I at one end, of size/~(I) < 1/Kq~ +1, return to S~(j) at least 

q,  - 1 times under Wk-j.  Thus from (8), for x E V , ( j )  = S , ( j ) \ I  we have, for 

n > N I ( j  - 1), that  

qn.tl(j)  < ~b(£j+l(X) < qnA2(j). 

Applying Proposition 2.2.8 for g = ¢(kJ.-~ 1), which is absolutely continuous on 

J~, since by hypothesis ¢(J_)j is continuous on J~(j)  D J~, and interval J~ = V, ( j )  

gives us the result for j - 1. The result follows by induction. II 

2.2.10 LEMMA: For any A C T with p(A)  > O, and every e > 0, there is an 

Ao C_ A with p (A \Ao)  < e and an infinite sequence {ni}i>l of integers such that 
k 

T qn, x E A/ 'or a/1 i, and a/1 x E A0. 

Proof: For any Borel set B of positive measure the map z ~ /z (B N (B - x)) 

is continuous at 0, where B - x  denotes the set B translated by the element 

- x  6 T (cf. JR, Theorem 1.1.5]). 

So, given e > 0, there is a 6 > 0 such that [/~(B) - # (B N(B - x)) [< e for 

[ x [< 6. From Lemma 1.3.1(ii) and (5) we have that 

a n + l  
IIq~,~ll < q~-allq-°'ll < ~ : q  IIq-°'ll • 

For all n we have that IIq-~ll < X/a,+lq, ,  and so 

1 
[[qnka[[ < gq2n ---* 0 as n ---} oo. 

Hence given 6 > 0 we may choose K"  > 0 such that,  for n > K " ,  we have 

IIq.k~ll < ~, and hence 

If we apply the above to our set A, given e > 0 we can find an nl such that  

( n  ) ' (9) p A T -q~,A >#(A)-~ .  
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Now we apply the above argument to the set A N T-q:~ A and obtain an n2 

with 

E (lO) .(ANr-': ,ANr-'~,ANT-': ,-<A) >, , (ANT-<A)-~.  
Then by monotonicity, (9) and (10) we have that 

. (ANT-<ANT-<A) ~ ~, (ANT-,~,AN r -<ANr- , : , -<A ) 

> , , (ANr-': ,A)-~ > ,,(A)- },. 
Inductively, we get for i > 1 

h h (2i- I~ 
,(ANT-'-,AN...Nr-'-,A) > ,(A)-~, 2. j~ 

Letting i ~ c¢ and defining qno = 0, we have that 

P(,=NoT-q: 'A) > P(A) - e .  

O 0  
The set Ao = N,=o T-q:, A has the required properties I 

From [P1, Lemma 2.9] we have the following: 

2.2.11 LEMMA: Given A C T with p( A ) > O, and e' > O, there is an Ao C_ A with 

p(A0) > 0 and p(A\Ao) < e', with the following properties: Given any e > 0, 

there exists a 5 > 0 such that for all x 6 Ao, and all intervals I(z) containing x 

of length g ( I ( z ) )  < 6, we have that 

(I(x) N A) 
> 1 - e .  

p ( I ( x ) )  

2.2.12 LEMMA: E( f )  ~ AZ for any A >_ O. 

Proof'. Suppose that E(f )  = AZ where A > 0. By the cocycle relation (3) and 

Lemma 2.2.6 we have that [ fq~(x) I< Y for all n > N', and all x E T.  Let v be 

the greatest integer such that vA < Y, with v = 0 if A = 0. We choose 

H(0) 
0 < e <  

4(2v + 1) 
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where H(0) is obtained in Lemma 2.2.9(i). Consider the compact set 

v 

pc = Y] \ U(i  - 
i----O 

This is the interval ( - e ,  Y] without intervals of width 2e about each iA E E(f) ,  
for i = 0 , . . . ,  v. Clearly/C N E(f )  = 0, so applying Lemma 1.2.3 gives us a Borel 

set B E fl with/*(B) > 0 such that for all m E Z, we have B n T-'riB n {y :  [ 

fro(Y) [e ]C } = 0. 
From Lemma 2.2.9(i), for all n > NI(0), every interval Q,, in P , ( a )  contains 

a subinterval J , (0)  on which I fq~ I =] ¢* ] moves continuously through a height 

greater than ½H(0). We claim that for n sufficiently large, and for every interval 

Q, ,  the ratio of the Lebesgue measure of Q,  to that of the set Qn n {y:  ] fq: (y) ]E 

/c } is greater than a fixed positive number. 

Applying 2.2.9(ii) to the interval(s) comprising L: of total length at least 

½H(0) - (2v + 1)e > ¼H(0), through which the graph of] fq: ] must pass, gives 

us a strictly positive constant F,  independent of i, such that, for n > NI(0), 

/~ ( J , , (0)n  {Y: I fq~(Y) ]e K: }) > F H(0) 
4 

So, by monotonicity, for n > N1 (0) there exists a strictly positive constant W, 

independent of i, such that 

t' ( Q - n  {y : 1 L ~ ( y ) l e  ~:}) (11) , ( Q , )  > W. 

This proves our claim. 

Now from Lemma 2.2.11, given 0 < d < ~/~(B), there is a B0 C B with 

p(B\Bo) < d, and a 6 > 0, such that, for all x E B0, 

(12) 1 > 1- w 

for any interval I°(x) containing x, of length/~ (I'(x)) < 6. Then, from Lemma 

2.2.10, given 0 < e" < ½/z(B0), there is a Borel set B1 C_ B0 with #(Bo\B1) < e", 
k 

and a sequence {ni}j>l of integers, with Tq"J x E B0 for all x E B1. We now fix 

x E B1. From Proposition 2.2.2 we know that, given 6 > 0, there is an integer 

M ~ such that, for k > M t, 

. (Q,~ (x)) < 6, 
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where Q~h(z) is the interval in Pk(q) which contains x. So for n -- n i > M' ,  we 

have that  

(13) p(Q.(z)[']B) 1 t'(Q.(~)) > 1 - ~ m  

Now, applying (12) to Tq~z 6 B0 for this n, we also get that  

P (T'h"O"(x) n B) 1 
(14) > 1 -  W, p (Tq- h Q . ( z ) )  

since the interval T~ Q,(x) encloses the point T~z and 

p(T'~Q.(x)) = p(Q.(z)) < 6. 

So, using the T-invaxiance of p, (14) becomes 

q~ 

(15) > 1 -  w. ~,(Q.(x))  

1 By (13) and (15) B and T-q~B take up, in proportion, more than 1 - i W  of 

Qn(x) for n = nj > M' .  Hence we have that for n = nj  > M'  

, 
> I - W .  ,(Q.(x)) 

So, reducing to a subset of B if necessary, we find that,  for our chosen n and 

z ,  the set BNT-q~B takes up at least a fixed proportion of Q , ( z ) ;  from (11) 

we have that  for n sufficiently large {y  : I fq~(Y) ]6/C} also takes up at least a 

fixed proportion of Q,(x). Since these proportions add up to more than 1, the 

two sets must intersect for n = n I > Y' = max {M',  N~(0)}. 

This shows that there is an m with 

B~T-~BN{y:If~(y) I6]C} #0. 

Thus we have a contradiction, and the lemma is proved. [[ 
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2.2.13 THEOREM: Let f fd/* = 0, f(k-2) be continuous wi~h zero/ntegral, y(k-1) 

be piecewise continuous also with zero integral and f(k) R/emann integrable with 

f f(k)dp ~ O. Then the skew-product T l is ergodic for all ct E Sk. 

Proof." Since the only closed additive subgroups of R are: AZ for A _> 0, or 

R itself, then the above Lemma and 1.2.2 demonstrate that the only possible 

remaining choice for the essential values is E( f )  = It .  By 1.2.5 this shows that 

the skew-product T l is ergodic. | 

2.2.14 Remarks: We note that for k = 1,•1 ~ R \ Q, however the result from 

[P1] is valid for all irrationals. This is due to us not having to use the 'inductive 

step' 2.2.9 for k = 1. For k > 1 this step introduces the extra power of k necessary 

to guarantee the result. Also for k > 1 we have that Sk is a dense G~ of measure 

zero (see [HW]). | 

3. T h e  A d d i n g  Mac h ine  

3.1 INTRODUCTION. In this section we study skew product extensions of the 

adding machine transformation on T. Firstly we study the class of functions 

which are piecewise continuous, have zero integral and have a derivative which 

is Riemann integrable with non-zero integral. We study this class of functions 

and show that their properties ensure that the skew-product is ergodic. Then we 

note that the method used in Section 2 will not work for the adding machine in 

the case where k > 1. 

Finally we study the class of functions with zero integral and have a derivative 

of bounded variation; we show that these properties guarantee that  these func- 

tions define cocycles which are always coboundaries for a certain class of adding 

machine. 

3.2 CONDITIONS FOR ERGODICITY. 

3.2.1 Convention: Throughout this section we shall suppose that f is piece- 

wise continuous with zero integral, and f is Riemann integrable with non-zero 

integral. 

Let f have discontinuities at 0 _< wl < . . .  < WN < 1, as in Section 2, and let 

dr = .f(w +) - f(wT) for r = 1 , . . . ,  N, where f(w +) and f(wT) are the limits of 

f at wr as x approaches from less or greater argument. We suppose without loss 

of generality that E N l d r  < 0. 
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We define Pn to be the partit ion of T into pin) intervals in-cylinders), each of 

length 1/p(n),  defined by the first pin) - 1 points on the orbit of 0 under T. The 

subscript of a cylinder denotes the Pn to which it belongs. 

3.2.2 LEMMA: For all n and a11 cylinders Qn E Pn, there is a sub-interval (union 

of sub-cylinders) Jn C Qn on which fp(,) is continuous, satisfying 

1 
>- 

Proof." Clearly, for all n the discontinuities of fp(n) occur at the points Tswr 

for s = 0 , . . .  ,p(n) - 1 and r --- 1 , . . .  ,N .  In any cylinder Qn E Pn there are, 

therefore, at most N discontinuities of fv(n), and hence the result follows. | 

The following may be found in [P2, p.32]: 

3.2.3 LEMMA: There are positive constants K1, 1(2 and an integer 571 such that 

for n > NI we have that for p-a.e, z E T,  n.K~ < f ' ( x )  < n.K2. 

3.2.4 LEMMA: There exist strictly positive constants H, F and an integer N1 

with the following properties: Within each cylinder Qn of Pn for i = 1 , . . .  ,p(n),  

there is a sub-interva/Jn such that for n > N1, 

(i) fr(n) moves through a height greater than H on Jn, 

(ii) for any interva/[z,  y] = In _ fp(n) (Jn), we have that 

-1 I Jn)  ' (G(n)( -)n 
> Fly- l.  (Qn) 

Proof." By Lemma 3.2.2 we may consider the cylinder Jn = [an, bn) C Q,, on 

which fv( , )  is continuous and which satisfies 

> 1 
(16) p ( n ) . p ( J n )  = p(Qn) - -N" 

Then from Lemma 3.2.3, since p(n) > n for all n, we have, for n > N1, that 

(17) Kl.p(n)  < f~(n)(x) < Kz.p(n),  

for p-a.e, x E T.  Now we choose H = K l / 2 N ,  then for n > N1 the height h 

moved through by the cocycle on Jn is given by 

ff h = fp(n)(b,) - fp(n)(an) = ' I;,(.)a,. 
n 
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In order to obtain a lower bound for this height, we use (16) and (17) above 

to give us h > K1 . # ( J , )  .p(n) >> --~. This proves (i). 
--1 X --1 For (ii) define m = f ; ( . ) (  ) N  J -  and p = f~,(.)(y)n J.; then, since f , ( . )  is 

-1 X strictly increasing for n > N1, we have that f~(.)( . ) n d .  --- [re, p), and 

y - x = f'p(.)dp. 

So, from (17) above we have, for n > NI, that 

~ / - : r  
p - m >  

Ks.p(n)" 

Hence we have that 

and so 

p - m  y - z  
~,(Q.) > K2 ' 

- l  I , (:;(.,( . )n, . )  > 

K2 

for n > N1. Putt ing F = 1~Ks, we note that F is strictly positive and indepen- 

dent of i, which completes the proof of the second assertion. | 

3.2.5 LEMMA: E ( f )  ~ ~Z for any A >_ 0. 

Proo[: Suppose that E ( f )  = )~Z where A >_ 0. Since, by hypothesis, f has 

bounded variation, applying the Denjoy-Koksma inequality gives us a c > 0 such 

that  I / p ( , ) ( z )  I< c for all n, and all z E T.  Let v be the greatest integer such 

that  vA < c, with v = 0 if ~ = 0. We choose 

H 
0 < e < 

4(2v + 1) 

where H is the number obtained in Lemma 3.2.40). As in [P1, Lemma 2.10] we 

consider the compact set 

u 

= ( - , , c l  \ 
i=O 

Clearly E ( f ) n  )c -_ ¢, so applying Lemma 1.2.3 we obtain a Borel set such 

that  B n T - m B  [7 {Y: I fro(Y) IE ]C } = ¢ for all m E Z. 
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As in 2.2.12, using 3.2.4 we may show that for all n > N1, and every cylinder 

Q,, E Pn, there is a strictly positive constant W, independent of i, with 

u (Q. N {y: I l~(.)(y) le ~: }) (18) , (Q. )  > w. 

Now, from the Lebesgue Density Theorem, given x E B E ~ and an e = ½W > 

0, there is an N2 such that for n > N2 

p(Q.(x)~B) 1 
p(Qn(x)) > 1 - ~ W ,  

where x E Qn(x) e Pn. Also, since TP(n)Qn(x) = Qn(x) and the measure p is 

T-invariant, we have that 

p (Qn(x) ["] T-P(n)B ~ B) 
, (Q. (x) )  > I - W .  

So, for n > max {N1,N2}, we have that the set BNT-P(n)B takes up at least 

a fixed proportion of the cylinder Qn(x); from (18) above we also have that 

{y: I h(.)(~) le ~:} takes up at least a fixed proportion of Q.(x), for ~U i. Since 
these proportions add up to more than 1, the two sets must intersect for this n. 

This shows that there is an m with B ['7 T-roB ~ {y : I fro(y) IE ~C } ~ O. Thus 

we have a contradiction, and the lemma is proved. | 

Thus we may easily show: 

3.2.6 THEOREM: Let f be piecewise continuous, with f fd~ = O, f '  Riemann 
integrable and f ff dp ~ O. Then the skew product Tf is ergodic. 

3.2. 7 Remark: We note that the arguments above and in Section 2 involve prop- 

erties of the sequences of integers p(n), qn respectively associated to the map T. 

It seems that  we may obtain similar results to those given in Section 2 for the 

adding machine transformation. However, in Section 2, for the class of functions 

defined for k > 1 in 2.2.1, we use the 'good approximation' conditions of our ir- 

rational numbers to ensure that,  as we iterate our parti t ion intervals by Tq", the 

discontinuities do not spread evenly over the interval. For the adding machine, 

this behaviour does not occur, and so the method will not be applicable. | 

3.3. COBOUNDARIES FOR THE ADDING MACHINE. 
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3.3.1 CONVENTION: In this subsection we study the class of functions with zero 

integral and have a derivative which has bounded var/ation. We also assume 

that the associated integers p(n) (see 1.4) of our adding machine transformation 

satisfy 
o o  

(19) Z q,+1 
. = ~  p(n) < ~ "  

3.3.2 LEMMA: Suppose f is as above, then there is a positive constant K such 

that, for all n and all z E T,  

K 
(20) I fp(.)(x) I < p(n)" 
Proof: Since f has bounded variation and f f d p  = 0, the Denjoy-Koksma 

inequality gives us that  

(2a) I Y~(.>(x) I < c', 

for some positive constant c' = v a r f ,  all z E T and all n. Since f f d t t  = 0, we 

also note that for all n, we have that 

(22) / _  fp( . )d,  0, 
it 

on any n-cylinder, Bn C T. By hypothesis f is continuous, so we may assume 

that  there is a positive constant c such that [ f ( z )  [< c for all z E T. 

Let K = max {c, 3c' }, then suppose, without loss of generality, that there is 

an z 6 T and an n such that fp(n)(z) > Kip(n). We show that if this is so, then 

there is an n-cylinder on which the integral of fp(n) cannot be zero. 

From (21) the slope of fp(,) is bounded for all n, hence we may calculate the 

proportion of the n-cylinder to which z belongs on which fv(-) is positive. Let 

dl, d2 denote the distances to the right and left of z respectively, when fv(-) next 

crosses the z-axis. Since f is absolutely continuous we have that 

fz z+dl jt~(n)dp ' 

and so, by assumption and (21), 

N i 3 1  
dl ~> C/.p(n) ~ "p(n)" 

We get a similar inequality for d2. This implies that the function fv(n) cannot 

return to zero inside the cylinder. Therefore we cannot have f fp(,)dp = 0 for 

this cylinder; this contradicts (22), and so the result follows. | 
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3.3.3 THEOREM: Suppose that f : T --~ R is such that f f d p  = O, with f '  of  

bounded variation, then for all x E T we have that sup, I f , ( x )  I < ¢x~, and so 

f defines a L c¢ eobotmdary. 

Proof: Any n E N may be written uniquely as 

o(n) 

n = ~ nip(i) where n i e  { 0, . . . ,qi+,  - 1 }, 
i----0 

for some positive integer s(n). Thus for all x • T, we may write f . (x )  as 

v' , .C.)- i  p ( i )n lx)  ' fn (x )  = fp(o)no(x) q- fp(1)n,(Tn°x) + " "  + fp(s(n))n.¢.)(TZ-.,ffio 

by the cocycle relation. Hence by the cocycle relation (3) again, and the triangle 

inequality, we have that 

~'~"~-' p(i).,z) I A(x)  I -< In0Y(x)l + " "  + I no¢.)5~,¢,))(T ,-o I. 

Using (20) we have that 

~(n) 
K qi+l 

I f , ( x )  l -  < n o . K + . . . + n , ( n ) . p ( s ( n )  ) < K . ~  ~ < ¢~, 
i=0 

since ni < qi+l, and using our hypothesis (19). Hence sup. I f , (x )  I< ov for all 

x E T, and the result follows from [AS]. II 
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